Plot the number of observations that use each taxonomic rank in the dataset.
plot_taxa_rank(
data,
id = NA_character_,
facet_var = NA_character_,
facet_scales = "free",
alpha = 1
)
(list or tbl_df, tbl, data.frame) The dataset object returned by read_data()
, a named list of tables containing the observation and taxon tables, or a flat table containing columns of the observation and taxon tables.
(character) Identifier of dataset to be used in plot subtitles. Is automatically assigned when data
is a dataset object containing the id
field, or is a table containing the package_id column.
(character) Name of column to use for faceting. Must be a column of the observation or taxon table.
(character) Should scales be free ("free", default value), fixed ("fixed"), or free in one dimension ("free_x", "free_y")?
(numeric) Alpha-transparency scale of data points. Useful when many data points overlap. Allowed values are between 0 and 1, where 1 is 100% opaque. Default is 1.
(gg, ggplot) A gg, ggplot object if assigned to a variable, otherwise a plot to your active graphics device
The data
parameter accepts a range of input types but ultimately requires the 13 columns of the combined observation and taxon tables.
if (FALSE) {
# Read a dataset of interest
dataset <- read_data(
id = "neon.ecocomdp.20120.001.001",
site= c('COMO','LECO'),
startdate = "2017-06",
enddate = "2019-09",
check.size = FALSE)
# Plot the dataset
plot_taxa_rank(dataset)
# Plot with facet by location
plot_taxa_rank(dataset, facet_var = "location_id")
# Flatten the dataset, manipulate, then plot
dataset %>%
flatten_data() %>%
dplyr::filter(lubridate::as_date(datetime) > "2003-07-01") %>%
dplyr::filter(grepl("COMO",location_id)) %>%
plot_taxa_rank()
}
# Plot the example dataset
plot_taxa_rank(ants_L1)