Create the variable_mapping table

create_variable_mapping(
  observation,
  observation_ancillary = NULL,
  location_ancillary = NULL,
  taxon_ancillary = NULL
)

Arguments

observation

(tbl_df, tbl, data.frame) The observation table.

observation_ancillary

(tbl_df, tbl, data.frame) The optional observation_ancillary table.

location_ancillary

(tbl_df, tbl, data.frame) The optional location_ancillary table.

taxon_ancillary

(tbl_df, tbl, data.frame) The optional taxon_ancillary table.

Value

(tbl_df, tbl, data.frame) The variable_mapping table.

Details

This function collects specified data tables, extracts unique variable_name values from each, converts into long (attribute-value) form with the table name and variable_name values to the resulting table's "table_name" and "variable_name" columns, respectively. The resulting table's "mapped_system", "mapped_id", and "mapped_label" are filled with NA and are to be manually filled.

Examples

flat <- ants_L0_flat

# Create inputs to variable_mapping()

observation <- create_observation(
  L0_flat = flat, 
  observation_id = "observation_id", 
  event_id = "event_id", 
  package_id = "package_id",
  location_id = "location_id", 
  datetime = "datetime", 
  taxon_id = "taxon_id", 
  variable_name = "variable_name",
  value = "value",
  unit = "unit")

observation_ancillary <- create_observation_ancillary(
  L0_flat = flat,
  observation_id = "observation_id", 
  variable_name = c("trap.type", "trap.num", "moose.cage"))

location_ancillary <- create_location_ancillary(
  L0_flat = flat,
  location_id = "location_id",
  variable_name = "treatment")

taxon_ancillary <- create_taxon_ancillary(
  L0_flat = flat,
  taxon_id = "taxon_id",
  variable_name = c(
    "subfamily", "hl", "rel", "rll", "colony.size", 
    "feeding.preference", "nest.substrate", "primary.habitat", 
    "secondary.habitat", "seed.disperser", "slavemaker.sp", 
    "behavior", "biogeographic.affinity", "source"),
  unit = c("unit_hl", "unit_rel", "unit_rll"))

# Create variable_mapping table

variable_mapping <- create_variable_mapping(
  observation = observation,
  observation_ancillary = observation_ancillary,
  location_ancillary = location_ancillary, 
  taxon_ancillary = taxon_ancillary)

variable_mapping
#> # A tibble: 19 x 6
#>    variable_mapping_id table_name          variable_name mapped_system mapped_id
#>    <chr>               <chr>               <chr>         <chr>         <chr>    
#>  1 1                   observation         abundance     NA            NA       
#>  2 2                   observation_ancill~ trap.type     NA            NA       
#>  3 3                   observation_ancill~ trap.num      NA            NA       
#>  4 4                   observation_ancill~ moose.cage    NA            NA       
#>  5 5                   location_ancillary  treatment     NA            NA       
#>  6 6                   taxon_ancillary     subfamily     NA            NA       
#>  7 7                   taxon_ancillary     hl            NA            NA       
#>  8 8                   taxon_ancillary     rel           NA            NA       
#>  9 9                   taxon_ancillary     rll           NA            NA       
#> 10 10                  taxon_ancillary     colony.size   NA            NA       
#> 11 11                  taxon_ancillary     feeding.pref~ NA            NA       
#> 12 12                  taxon_ancillary     nest.substra~ NA            NA       
#> 13 13                  taxon_ancillary     primary.habi~ NA            NA       
#> 14 14                  taxon_ancillary     secondary.ha~ NA            NA       
#> 15 15                  taxon_ancillary     seed.dispers~ NA            NA       
#> 16 16                  taxon_ancillary     slavemaker.sp NA            NA       
#> 17 17                  taxon_ancillary     behavior      NA            NA       
#> 18 18                  taxon_ancillary     biogeographi~ NA            NA       
#> 19 19                  taxon_ancillary     source        NA            NA       
#> # ... with 1 more variable: mapped_label <chr>